from math import sqrt
movies = {'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0}, 'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5}, 'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0}, 'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5}, 'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0}, 'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5}, 'Toby': {'Snakes on a Plane':4.5, 'You, Me and Dupree':1.0, 'Superman Returns':4.0}}
def euclidean(data, p1, p2): "Calculate Euclidean distance" distance = sum([pow(data[p1][item]-data[p2][item],2) for item in data[p1] if item in data[p2]])
return distance
def pearson(data, p1, p2): "Calculate Pearson correlation coefficient" corrItems = [item for item in data[p1] if item in data[p2]]
n = len(corrItems) if n == 0: return 0;
sumX = sum([data[p1][item] for item in corrItems]) sumY = sum([data[p2][item] for item in corrItems]) sumXY = sum([data[p1][item] * data[p2][item] for item in corrItems]) sumXsq = sum([pow(data[p1][item], 2) for item in corrItems]) sumYsq = sum([pow(data[p2][item],2) for item in corrItems])
pearson = (sumXY - sumX * sumY / n) / sqrt((sumXsq - pow(sumX, 2) / n) * (sumYsq - pow(sumY, 2) / n)) return pearson
|