异度部落格

学习是一种生活态度。

0%

编辑距离算法 Levenshtein Distance

编辑距离,又称 Levenshtein 距离(也叫做 EditDistance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。俄罗斯科学家 Vladimir Levenshtein 在 1965 年提出这个概念。因此也叫 Levenshtein Distance,常用来衡量字符串相似度。

【算法过程】

int LevenshteinDistance(char s[1..m], char t[1..n])
{
// for all i and j, d[i,j] will hold the Levenshtein distance between
// the first i characters of s and the first j characters of t;
// note that d has (m+1)x(n+1) values
declare int d[0..m, 0..n]

for i from 0 to m
d[i, 0] := i // the distance of any first string to an empty second string
for j from 0 to n
d[0, j] := j // the distance of any second string to an empty first string

for j from 1 to n
{
for i from 1 to m
{
if s[i] = t[j] then
d[i, j] := d[i-1, j-1] // no operation required
else
d[i, j] := minimum
(
d[i-1, j] + 1, // a deletion
d[i, j-1] + 1, // an insertion
d[i-1, j-1] + 1 // a substitution
)
}
}

return d[m,n]
}

【代码】

#Levenshtein Distance Algorithm
#OS : Windows 7
#Python Version : Python 3.2
#IDE : VS2010 + PTVS

def levenshtein(str1, str2):
"""
Levenshtein Distance Algorithm
@param str1 string
@param str2 string
@return distance int
"""
#initialize dist
dist = [[0 for j in range(len(str2) + 2)] for i in range(len(str1) + 2)]
for i in range(len(str1) + 1):
dist[i + 1][0] = i
for j in range(len(str2) + 1):
dist[0][j + 1] = j
for i in range(len(str1)):
for j in range(len(str2)):
if str1[i] == str2[j]:
dist[i+1][j+1] = dist[i][j]
else:
dist[i+1][j+1] = min(dist[i][j+1], dist[i+1][j], dist[i][j]) + 1
return dist[len(str1)][len(str2)]

def main():
str1 = 'sitting'
str2 = 'kitten'
leven_dist = levenshtein(str1, str2)
print("str1=%s, str2=%s, distance=%d" % (str1, str2, leven_dist))

if __name__ == "__main__":
main()

【参考资料】 http://en.wikipedia.org/wiki/Levenshtein_distance